首页> 外文OA文献 >Semantic Road Segmentation Via Multi-Scale Ensembles of Learned Features
【2h】

Semantic Road Segmentation Via Multi-Scale Ensembles of Learned Features

机译:通过学习特征的多尺度组合进行语义路分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semantic segmentation refers to the process of assigning an object label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image. Common approaches formulate the task as a random field labeling problem modeling the interactions between labels by combining local and contextual features such as color, depth, edges, SIFT or HoG. These models are trained to maximize the likelihood of the correct classification given a training set. However, these approaches rely on hand-designed features (e.g., texture, SIFT or HoG) and a higher computational time required in the inference process. Therefore, in this paper, we focus on estimating the unary potentials of a conditional random field via ensembles of learned features. We propose an algorithm based on convolutional neural networks to learn local features from training data at different scales and resolutions. Then, diversification between these features is exploited using a weighted linear combination. Experiments on a publicly available database show the effectiveness of the proposed method to perform semantic road scene segmentation in still images. The algorithm outperforms appearance based methods and its performance is similar compared to state-of-the-art methods using other sources of information such as depth, motion or stereo.
机译:语义分割是指为图像中的每个像素分配对象标签(例如,建筑物,道路,人行道,汽车,行人)的过程。常见方法将任务表述为通过组合局部和上下文特征(例如颜色,深度,边缘,SIFT或HoG)对标签之间的相互作用进行建模的随机字段标记问题。对这些模型进行训练,以在给定训练集的情况下最大程度地进行正确分类。然而,这些方法依赖于手工设计的特征(例如,纹理,SIFT或HoG)以及推理过程中所需的更高的计算时间。因此,在本文中,我们着重于通过学习特征的集合来估计条件随机场的一元电势。我们提出一种基于卷积神经网络的算法,以从不同规模和分辨率的训练数据中学习局部特征。然后,使用加权线性组合来利用这些特征之间的多样化。在公开数据库上的实验表明,该方法在静态图像中执行语义道路场景分割的有效性。该算法优于基于外观的方法,并且与使用其他信息源(例如深度,运动或立体声)的最新技术相比,其性能相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号